CAD / lecture

Rapid prototyping is:

- Rapid prototyping is an additive (layered) digital fabrication technology
- Layers of material are added forming the final 3d physical model
- The digital data of the virtual 3d model is divided in slices and manufactured in layers
- They differ from other digital manufacturing techniques like milling and laser cutting which are subtractive in nature

CAD / lecture

Main types of Rapid prototyping are:

- Selective laser sintering (SLS) Laser fuses plastic, metal or ceramic particles together.
- Fused Deposition modelling (FDM) Plastics or metal are melted and used as printfluid.
- Stereo lithography (STL or SLA) Laser cures the "fluid resin" in layers.
- Laminated object manufacturing (LOM) Layers of paper or plastic are cut and stacked.
- 3D Printing (3DP) Layers of powder are bound together by fluid from printerhead.

CAD / lecture

Main types of Rapid prototyping are:

Selective laser sintering (SLS) Laser fuses plastic, metal or ceramic particles together.

- Advantage a wide range of materials can be used.
- Disadvantage the accuracy is depending on the particle size.

CAD / lecture

Main types of Rapid prototyping are:

Fused Deposition modelling (FDM) Plastics or metal are melted and used as print fluid for layered printing.

- Advantage is that several materials can be used with different strength and melting temperature.
- Disadvantage is the limited detail in the printing process.

Main types of Rapid prototyping are:

Stereo lithography (STL or SLA) Laser cures the liquid photopolymer in layers.

- Advantage is the high accuracy of the models.
- Disadvantage is the high machine costs and the limited amount of materials which can be used.

CAD / lecture

Main types of Rapid prototyping are:

Laminated object manufacturing (LOM) Layers of paper or plastic are cut and stacked.

- · Advantage is the low costs of material and the large size of the object.
- Disadvantage are the limited amount of materials which can be used.

Main types of Rapid prototyping are:

3D Printing (3DP) Layers of powder are bound together by fluid from printer head.

- Advantage is the low costs, ease of use and speed of the printing process.
- Disadvantage are the limited amount of materials which can be used and the limited accuracy.

CAD / lecture

Main types of rapid prototyping difference:

Used material:

- *Strength of the 3D model
- *Accuracy of the 3D model
- *Surface finish of the 3D model
- *Cost per print

Machines:

- *Cost
- *Size of the machine
- *Hazardous environment?
- *Speed
- *Size of object

CAD / lecture

The use of rapid prototyping techniques:

- Design support
- · Basis for indirect manufacturing
- Direct manufacturing (low volume)

Advantages are:

- The speed of making physical models in comparison with the traditional model making techniques.
- The possible complexity of the models
- · The direct link with the digital design data
- Testing design concepts or functionality of the object
- · Possibility of using the 3D models as a mould or a contra mould
- Direct manufacturing of low volumes

CAD / lecture

3D printing – contour crafting

Large scale3d printing

Behrokh Khoshnevis is a professor of *Industrial & Systems Engineering* and *Civil & Environmental Engineering USC*

The use of rapid prototyping techniques: Design support

Visual feedback

The use of rapid prototyping techniques: Design support

3D model of the design - Communication

The use of rapid prototyping techniques: Design support

Prototyping a construction detail - analysis

The use of rapid prototyping techniques: Basis for indirect manufacturing

Rapid prototyping of casts – low volume production

The use of rapid prototyping techniques: Basis for indirect manufacturing

Rapid prototyping of contra moulds

The use of rapid prototyping techniques: Direct manufacturing

3D printed CO2 filter for power plant

The use of rapid prototyping techniques: Direct manufacturing

3D printed soles of customized shoes for Olympic athletes

3D printing at the faculty

October 5, 2010

3D printing at the faculty

The Cam Lab has two 3D printers for students to use. The printers generates gypsum plaster models

Z Corp 350 3D printer The maximum sizes for the models are: 20,3 x 25,4 x 20,3 cm (8 x 10 x 8 inch)

Z Corp 510 color 3D printer The maximum sizes for the models are: 25,4 x 35,6 x 20,3 cm (10 x 14 x 8 inch)

CAD / lecture

3D printing at the faculty

The printers generates gypsum plaster models

The material is quite brittle and not suitable for supporting high loads

The accuracy is 0.1 mm

Minimum thickness of 3 mm for walls and floors Minimum thickness of 1 mm for columns (thicker when higher) Minimum thickness of 3 mm for free-standing columns Embossments are already visible with only 0.1 mm difference

CAD / lecture

3D printing at the faculty

Software:

CAD (Maya-Rhino) – design of the 3D model CAM (Zprint) – print software imports the 3D model and prints the imported 3D model

The Zprint software imports files with extension of VRML or STL The 3D model has to be a closed 3D polygon model for printing

